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Dynamic Quadrupedal Robot Locomotion
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Abstract—Deep reinforcement learning (RL) uses model-free
techniques to optimize task-specific control policies. Despite
having emerged as a promising approach for complex problems,
RL is still hard to use reliably for real-world applications.
Apart from challenges such as precise reward function tuning,
inaccurate sensing and actuation, and non-deterministic response,
existing RL methods do not guarantee behavior within required
safety constraints that are crucial for real robot scenarios. In
this regard, we introduce guided constrained policy optimization
(GCPO), an RL framework based upon our implementation of
constrained proximal policy optimization (CPPO) for tracking
base velocity commands while following the defined constraints.
We introduce schemes which encourage state recovery into
constrained regions in case of constraint violations. We present
experimental results of our training method and test it on the real
ANYmal quadruped robot. We compare our approach against the
unconstrained RL method and show that guided constrained RL
offers faster convergence close to the desired optimum resulting
in an optimal, yet physically feasible, robotic control behavior
without the need for precise reward function tuning.

Index Terms—Deep Learning in Robotics and Automation,
AI-Based Methods, Legged Robots, Robust/Adaptive Control of
Robotic Systems, Underactuated Robots

I. INTRODUCTION

LEGGED locomotion has been an active area of robotics

research over the past few decades. Despite our best

efforts, achieving extraordinarily dynamic robotic behavior

still remains an open problem. Most of the existing work

has focused on the use of traditional model-based control

techniques, such as offline trajectory optimization (TO) [1]

and online model predictive control (MPC) [2] which, due to

their mathematical complexity, are often based on simplified

models of the systems. Such simplifications result in control

solutions that are often mechanically limiting and inefficient.

Considering robotic locomotion as a reinforcement learning

(RL) problem [3] offers a model-free data-driven alternative

to model-based control. Although RL has witnessed signifi-

cant contributions from researchers to address issues such as

sample inefficiency [4] and hyperparameter tuning [5], it still

faces significant challenges to be used for real-world robotic

locomotion applications mainly due to no hard guarantees on

safety-critical constraints.
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Fig. 1: Overview of our training and validation process. Accompa-
nying video can be found at: https://youtu.be/iPDmG9knkLs

In this work, we develop an RL problem formulation that

introduces constraints based on optimal control techniques.

We train a control policy, using our constrained proximal

policy optimization (CPPO) method based upon proximal

policy optimization (PPO) [5], for tracking user-generated

reference base velocities on the ANYmal [6] quadruped, a 33

kg legged robot. We experimentally validate its performance

in comparison with unconstrained training procedures in a

physically realistic simulation environment and on the real

ANYmal robot.

A. Related Work

Control architectures for robotic quadrupedal locomotion

have seen various forms. One of the common approaches

leverages mathematical optimization techniques [7] to generate

reference trajectories by solving an optimal control (OC) [8]

problem with objectives such as minimization of energy con-

sumption, and constraints that consider the dynamics of the

robotic systems. Authors of [9] presented a TO formulation

for legged locomotion that automatically generates reference

motions without requiring any prior footstep planning.

Extending upon OC, some of the work has focused on

formulating locomotion as multiple tasks [10], such as main-

taining robot stability and tracking desired limb motions,

solved by prioritizing each individual task using quadratic

programming [11] solvers. This principle of sub-dividing tasks
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into simpler problems has also been followed in some of the

deep RL research [12].

Model-based control methods often use simplified mechan-

ical models to ease on the mathematical complexity of the

problem. For example, most formulations consider the robotic

system as a point mass with massless limbs. These approxi-

mations result in control solutions that cannot exploit the full

range of capabilities of the systems. Moreover, several model-

based controllers require hand-tuned costs by human-experts

which are specific to each system’s task thereby limiting their

generality.

Deep RL methods attempt to address some of these lim-

itations of model-based control by employing model-free

techniques which optimize over a control policy, a neural

network which maps states into actions, so as to maximize

a task-specific reward signal by means of trial and error. Such

methods have been investigated for legged locomotion tasks

[13], [14] but have mainly been demonstrated in simulations

using unrealistic robot models, e.g. ideal torque sources, infi-

nite velocity/torque ranges. Moreover, RL techniques usually

require large amounts of data making training on a real robot

infeasible. This necessitates the use of physics simulators.

However, policies trained using simulations often do not

transfer for real world tasks since the reality gap between

simulations and the physical world are strongly pertinent.

These issues of RL have been tackled using techniques such

as actuator modeling [15], implementing a modular train-

ing approach [16], introducing domain randomization [17],

increasing policy generalization [18] and adding noise to

observations and actions in the training environments. Authors

of [15] have demonstrated the use of a deep RL approach to

complex legged locomotion tasks. Our work, extends upon

their training methods to a constrained learning approach as

discussed in section III.

Despite the success of deep RL approaches on real-world

robotic applications, one of the main challenges in solving an

RL problem is precise reward function tuning. As a solution,

an inverse reinforcement learning (IRL) [19] problem can be

characterized as: given reference trajectories of an agent in

various circumstances, determine the reward function to be

minimized. This reward function is then used to solve an

RL problem. The authors of [20] and [21] have successfully

implemented IRL methods for perception and control tasks,

however, the need for the extra step of solving an RL problem

adds to training delays. Instead, designing the problem as

that of behavioral cloning (BC) [22] gets rid of the reward

recovery step, and directly optimizes over a policy given

reference demonstrations. Along similar lines, guided policy

search (GPS) [23] techniques can be used to reduce training

times by directing policy learning in turn avoiding poor local

optima.

Model-based RL [24] techniques, which require a knowl-

edge of system dynamics, have also been proposed as an

approach to boost convergence along desired optima. In the

pursuit of making RL methods desirable for use in safety crit-

ical systems, methods such as constrained policy optimization

(CPO) [25] have also been investigated to ensure that an RL

control policy obeys the necessary safety constraints during

operation.

B. Contributions

Our work extends upon the above research to realize an RL

problem formulation that considers the constraints required

to guarantee the stability of a quadrupedal robot system.

Furthermore, our problem formulation introduces constraints

such as end-effector boundaries, joint velocity limits, and joint

acceleration limits that direct policy optimization towards a

desired quadrupedal locomotion behavior. This constrained

formulation, coupled with techniques motivated by BC and

GPS, which in our case is guided policy updates (GPUs),

further results in the reduction of training time while also

eliminating the need for precise reward function tuning.

We also present the importance of the setup of an RL

environment, and show how differences in dynamic properties

can result in a significantly different learnt behavior. We also

compare different physics simulation frameworks and detail

upon the motivations of preferring one over the others.

We introduce several schemes that make the quadrupedal

system more robust and therefore better suited for use in

real-world applications. Since we do not use approximations

required for model-based control, our learnt policies better uti-

lize system dynamics to generate efficient locomotion behavior

requiring significantly lesser torque compared to a model-

based trot controller. We successfully transfer the control

policy trained in a simulator to the real system and further

provide evidence of dynamic behavior of the control policy

by testing its response after changing the physical properties

of the real system, and also by continuously varying control

step times.

II. APPROACH

In this section we describe the RL methods we use for the

task of quadrupedal locomotion.

A. Algorithm

Based on the framework of Markov decision pro-

cesses (MDPs) [26], a constrained Markov decision process

(CMDP) [27] is defined as a tuple (S,A,R,C,P,d,µ), where S

is the set of states, A is the set of actions, R : S×A×A →R is

the reward function, P : S×A×S → [0,1] is the state transition

probablity, and µ is the starting state distribution as chracter-

ized in the MDP tuple. CMDPs augment the MDP with a

set C of cost functions, C1, ...,Cm, with Ci : S×A× S → R,

and limits d1, . . . ,dm as described in [25]. Being consistent

with the definitions and notation used by the authors of [25],

a stationary policy π : S → P (A) is defined as a function

mapping states to probability distributions over actions. The

set of stationary policies is defined as Π. π (a|s) denotes the

probability of selecting action a in state s.

Given a performance measure,

J (π)
.
= E

τ∼π

[

∞

∑
t=0

γ tR(st ,at ,st+1)

]

,

where γ ∈ [0,1) is the discount factor, τ denotes a trajec-

tory dependent on π , we aim to select a policy π which

maximizes J (π). For a CMDP, the expected discount cost

return JCi
(π)

.
= E

τ∼π
[∑∞

t=0 γ tCi (st ,at ,st+1)] for a policy π with
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cost function Ci. The set of feasible stationary policies ΠC
.
=

{π ∈ Π : ∀i,JCi
(π)≤ di} .

The RL problem is then expressed as

π∗ = argmax
π∈ΠC

J (π) .

For a policy πθ parameterized with θ , most policy opti-

mization strategies iteratively update the base policy using

local policy search methods [28] by maximizing J (π) over

a trust region [29]. For a CMDP, policy iteration using trust

regions [25] can be expressed as

πk+1 = argmax
π∈Πθ

E
s∼dπk

a∼π

[Aπk (s,a)]

subject to JCi
(πk)+

1

1− γ



 E
s∼dπk

a∼π

[

A
πk
Ci
(s,a)

]



≤ di ∀i

D̄KL (π||πk)≤ δ .

(1)

where D̄KL = E
s∼πk

[DKL (π||πk) [s]], and δ > 0 is a step size.

DKL refers to the Kullback-Leibler divergence. Authors of [25]

show that developing CPO as a trust region method implies

CPO inherits the performance guarantee given by certain lower

bound detailed in [25]. The authors of [25] also define the

worst-case upper bound on the cumulative discounted return

for a CMDP.

The PPO technique introduces a clipped objective function

LCLIP
t (θ) = Et [min(rt (θ)At ,clip(rt (θ) ,1− ε,1+ ε)At)]

where ε is a hyperparameter. In our implementation, we

introduce an approximation of the constraint expressed in (1)

to the above objective, and rewrite it as

LCCLIP
t (θ) = LCLIP

t (θ)−∑
i

ζiJCi,t (πθ ) , (2)

where ζi is an experimentally tuned hyperparameter. The

objective LCLIP
t is often augmented to include a value function

loss term LV F
t and an entropy term S [5]. The objective

function, with coefficients c1 and c2 is then

LCCLIP+V F+S
t (θ)

= Et

[

LCCLIP
t (θ)− c1LV F

t (θ)+ c2S[πθ ] (st)
]

.
(3)

We introduced this approximation as, in our experiments,

we observed that the constrained policy optimization ob-

jective was extremely sample inefficient. We observed no

improvements in our training even after 5 billion sampling

steps for the task of tracking base velocity commands. As a

solution, we implement an approximated constrained proximal

policy optimization (aCPPO) method along with generalized

advantage estimate (GAE) [30], and optimize over the loss

function represented in (3). After convergence, we perform

hard constrained proximal policy optimization (hCPPO) using

the objective LCLIP+V F+S
t and by introducing the cost return

constraint expressed in (1). We collectively refer to both these

optimization steps as constrained proximal policy optimization

(CPPO).

In our work, we introduce three degrees of constraints and

handle them accordingly:

1) Soft (ρ) constraints are included as part of the reward

function. These need not be critical for safe operations.

Instead these are introduced in order to direct policy

search towards a desired behavior.

2) Hard (κ) constraints cannot be violated and are included

in the set of constrained cost functions C. These are

directly included during policy updates. In case of

aCPPO, these are included in (2), and for hCPPO these

are included as a constraint, as shown in (1) for the

objective LCLIP+V F+S
t .

3) No-go (η) constraints are introduced during training

such that when κ-constraints are violated beyond a

certain threshold the training episode is terminated to

prevent exploration around regions which do not con-

tribute towards policy optimization.

We use guided policy updates to warm start our control pol-

icy and then perform constrained proximal policy optimization

for policy exploration. We then alternate between these during

training as described in Alg. 1.

Algorithm 1 Guided Constrained Policy Optimization

Input: λd , smax, cmax, nsteps, nbatch, inuser, ch
max, Ha, Hh

Initialize θ , α = 1

1: Generate set of trajectories D = CONTROLLER(inuser)
⊲ using model-based control strategy

2: for t = 0,1,2 . . .Ha do

3: θ ,D = GUIDEDPOLICYUPDATE(θ ,D,αsmax,nbatch)
4: θ = POLICYOPTIMIZATION(θ ,nsteps,(1−α)cmax, f alse)
5: α = eλd t

6: end for

7: for t = 0,1,2 . . .Hh do

8: θ = POLICYOPTIMIZATION(θ ,nsteps,c
h
max, true)

9: end for

10: function GUIDEDPOLICYUPDATE(θ , T , itmax, nbatch)

11: lbatch = itmax/nbatch

12: Sample lbatch state-action pairs (s,a∗) from T
13: for i = 0 to nbatch −1 do

14: Generate {a} for {s} using πθ

15: Update θ by minimizing ∑
lbatch
j=0 ||a j −a∗j ||

2

16: end for

17: T = T \{(s,a∗)}
18: return θ , T
19: end function

20: function POLICYOPTIMIZATION(θ , lepisode, itmax, hard)

21: it = 0, τ = {}
22: while it < itmax do

23: for t = 0 to lepisode −1 do

24: Sample at ∼ πθ (a|st)
25: st+1,rt ,{ct}= RLENVIRONMENTSTEP(at)
26: it = it +1, τ = τ ∪ (st+1,rt ,{ct})
27: end for

28: if hard == f alse

29: Update θ using aCPPO

30: else

31: Update θ using hCPPO

32: end if then

33: end while

34: return θ
35: end function
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Fig. 2: Comparing differences in learnt behavior for different actuator
models. (top) left: the RaiSim environment manages to sprint forward
using a gait similar to galloping, center: the PyBullet environment
converges at a local optimum where it uses hind legs to push its
body forward while the front legs are not used, right: the MuJoCo
environment struggles to find an optimal policy mainly because the
desired joint positions at each step are not tracked reliably. (bottom)
left: average discounted reward curves observed during training,
right: average discounted reward curves observed during training in
RaiSim for different ANYmal actuator models.

B. Simulation

Most RL algorithms are sample inefficient and require

significant amount of trials to learn a desirable control policy.

Instead of training on a physical platform, which is slow and

unsafe, we train the locomotion policy on a significantly faster

simulation environment. However, policies trained in simula-

tions often do not perform well in real-world systems. This is

mostly due to the reality gap associated with simulations which

do not perfectly model the physical world. Moreover, while

performing experiments we realized different actuator models

for ANYmal resulted in considerably different behaviors for

the same training parameters.

We tested ANYmal simulations in RaiSim [31], PyBul-

let [32] and MuJoCo [33] for a simple task of moving forward

with maximum feasible base velocity in order to compare the

generated behaviors and training simulation times. The input

to the control policy (34-dimensional state vector) consisted of
{

baseheight ,baseorientation,basetwist , jointstates

}

, and the output

(12-dimensional action vector) consisted of
{

jointpositions

}

de-

sired for the next state. We trained the policies using PPO with

the same hyperparameters, and on the same device, using the

reward function 0.3×base f orwardVel −4e−5×‖ jointtorque‖
2
.

We trained the policies for up to 10M time steps with each

iteration comprising of 76.8k episodic step samples. Using a

discount factor γ = 0.998, and maximum episode length of

6.4k simulation steps we achieved the results represented in

Fig. 2.

We performed experiments using different simulators and

actuator models to validate our point that learnt behavior

significantly depends on the setup of the RL environment,

further substantiated by running experiments in RaiSim using

different feed-forward torque and damping parameters for the

actuators, as represented in Fig. 2. Moreover, none of the

policies trained with different actuator models were observed

to be inherently stable, necessitating the use of a good actuator

model. For this, we used the same technique as authors of [15]

to approximate the actuator model using a neural network

trained through supervised learning. We also used the same

network architecture as used in [15] for training the actuator

network.

Moreover, due to sample inefficiency in most RL algo-

rithms, it is important to consider time required for each

simulation step. In our experiments, we observed that for

same number of parallel executions, RaiSim was faster than

both PyBullet and MuJoCo as shown in Table I. With several

more parallel executions possible across multiple threads, we

managed to execute 1B simulation steps in less than 3 hours

in RaiSim on a PC.

C. Environment Setup

Authors of [15] and [12] provide competitive baselines.

We extend their approach to constrained policy optimization

utilizing some of the hyperparameters used in their work.

In this section we describe the setup of the ANYmal RL

environment for the task of tracking user-generated reference

base velocity commands.
1) Observation Space: In order to be extendable to

the physical robot, the observation space chosen for the

ANYmal environment needs to be accessible through

on-board sensors and state-estimators. In this regard, the 109-

dimensional state vector for the RL environment is defined

as
{

bh,O,vbase,ωbase,Jt ,J
des

t−1,t−2,t−3,t−4, J̇t,t−1,t−2,Vbase

}

where bh is the robot base height, O is the base orientation,

vbase is the linear velocity in base frame, ωbase is the angular

velocity in base frame, Jt is the joint position at time t,

J des
t is the policy output at time t, J̇t is the joint velocity at

time t and Vbase is the user-generated desired base velocity

expressed in base frame.
2) Action Space: The control policy outputs a 12-

dimensional action vector comprising of
{

J des
t

}

. The desired

joint positions are forwarded as an input to the approximated

actuator network which outputs the torques for each of the

joints for the ANYmal quadruped. These torques, clipped

between [−35 Nm,35 Nm], are then directly applied to the

joints.
3) Network Architecture: Since our work focuses on the

constrained RL formulation, we decided to use the same

network architecture implemented in [15], which had been

already demonstrated to perform well.
4) Reward Terms: The reward terms are shown in Table II.

These terms are multiplied by coefficients which are scaled

further to increase the difficulty for the RL agent as training

progresses.
5) ρ-Constraint Costs: These costs are directly added to

the reward function, and are as shown in Table III.

TABLE I: Training time required for executing 10M simulation steps
using 12 parallel environment runs tested on a PC housing an Intel
i7-8700K and an Nvidia RTX 2080Ti.

RaiSim PyBullet MuJoCo

Training Time (seconds) 1031.6403 2043.9825 1820.8244
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Fig. 3: Side-view and top-view of the ANYmal quadruped schematics
representing some of the parameters used for constraint costs.

6) κ-Constraint Costs: These hard constraints are directly

introduced in the aCPPO formulation as part of the expected

discount cost return JCi
for cost term i. We introduce cost

terms that account for stability constraints such as ZMP, as

shown in Fig. 3, that have been used extensively for optimal

control problem formulations. The κ-constraint cost terms for

the aCPPO are shown in table IV. We do not use the ZMP term

in hCPPO since the violation of ZMP can be caused due to

external perturbations and discarding policies based on ZMP

violations implies that we cannot perform state recovery.

In order to encourage recovery into a stable state upon

violation of κ-constraints, we introduce an additive reward

term for each of the constraints in case the robot state shifts

back to obeying these constraints upon violations.

7) η-Constraint Costs: For cases when the control policy

executes actions that cause the robot to land in unstable and

unrecoverable states, we introduce η-constraints. Upon viola-

tions of these constraints we terminate the training episode,

and disregard the training steps that may have been explored

between κ-constraint and η-constraint violations and add

a negative terminal reward to the last training step in the

reformatted episode samples. The intuition behind this was to

limit updates through explorations in regions that, apart from

violating constraints, do not contribute to learning a feasible

and desired locomotion behavior. The constraint terms are

shown in table V. When any of the expressions evaluate to

true, the training episode is terminated.

III. TRAINING

An overview of the training and validation process em-

ployed for our RL task is represented in Fig. 1.

TABLE II: Reward terms for the MDP formulation. Here K refers to
the logistic kernel defined as K(x) = (ex +2+ e−x)−1, V lin

base is the

desired linear velocity in base frame, τ is the joint torque, V
ang
base

is

the desired angular velocity in base frame, v
f oot
world,t is the foot velocity

in world frame at time t, and Obase
x,y,z is the base orientation along the

x,y,z axes.

Term Expression

Linear Velocity K
(

vbase −V lin
base

)

Torque ‖τ‖2

Angular Velocity K
(

ωbase −V
ang
base

)

Foot Acceleration ||v
f oot
world,t − v

f oot
world,t−1||

2

Foot Slip ||v
f oot
world ||

2

Smoothness ||Jt −Jt−1||
2

Orientation ||Obase
x,y,z −{0,0,Obase

z }||2

A. Generation of Reference Trajectories

We used a whole-body trotting controller to generate ref-

erence trajectories sampled at 400 Hz using the Gazebo

simulator. The trajectories were represented as state-action

(s,a∗) pairs as detailed in Section II-C.

B. Guided Policy Updates

Our training method alternates between supervised learning

and reinforcement learning as presented in Alg. 1. The policy

updates through supervised learning ensure that the policy

search is directed towards a desired behavior. We trained the

policy using the mean-squared-error loss between a∗ and πθ (s)
minimized using the Adam [34] optimizer.

While performing experiments, we observed that the policy

action entropy had to be reduced after each session of su-

pervised learning, else the policy search still preferred explo-

ration. In fact, during some training experiments we found that,

without precise reward function tuning, not reducing entropy

caused the RL agent to converge at a local minimum. We

empirically determined the reduction in entropy after each

successive update.

C. Constrained Policy Optimization

During policy exploration and optimization, we use the

reward and cost functions described in the previous section to

train the RL agent. We also introduce the following schemes

to make our controller robust to unaccountable factors.

TABLE III: Cost terms for ρ-constraints. Here J̇ limitρ refers to the
joint speed limit for ρ-constraints, J̈ limitρ is the joint acceleration

limit for ρ-constraints, fh,i is the height of end-effector i, f
desρ

h
is

the desired end-effector height, v f ,i is the velocity of the end-effector

i, fi is the position of end-effector i, R
ρ
i is the corresponding feasible

end-effector region for ρ-constraints, and f 0
i is the base position for

end-effector i for a given joint configuration.

Term Expression

Joint Speed
∥

∥max(|J̇t |− J̇ limitρ ,0)
∥

∥

2

Joint Acceleration
∥

∥max(|J̈t |− J̈ limitρ ,0)
∥

∥

2

Foot Clearance ∑i

(

fh,i − f
desρ

h

)2 ∥
∥v f ,i

∥

∥

2

Foot Eligible Region bool
(

fi /∈R
ρ
i

)

×
∥

∥ f 0
i − fi

∥

∥

2

TABLE IV: Cost terms for κ-constraints. Here J̇ limitκ refers to the
joint speed limit for κ-constraints, J̈ limitκ is the joint acceleration
limit for κ-constraints, Rκ

i is the corresponding feasible end-effector
region for κ-constraints, u is the ZMP, S is the region of support
polygon with vertices given by the feet in contact with the ground,
C is the center of mass of the quadruped, and Ffi

is the contact force
at foot i. The foot contacts cost term ensures that if 2 feet are in
contact with the ground, they are not on the same side.

Term Expression

Joint Speed
∥

∥max(|J̇t |− J̇ limitκ ,0)
∥

∥

2

Joint Acceleration
∥

∥max(|J̈t |− J̈ limitκ ,0)
∥

∥

2

Foot Eligible Region bool( fi /∈Rκ
i )×

∥

∥ f 0
i − fi

∥

∥

2

ZMP bool(u /∈ S)×‖u−C‖2

Foot Contacts bool(∑i(Ffi > 0)< 3 &
((Ffl f

> 0 & Fflh > 0) or (Ffr f
> 0 & Ffrh

> 0)))
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TABLE V: η-constraint terms. Here J̇ limitη refers to the joint speed
limit for η-constraints, J̈ limitη is the joint acceleration limit for η-
constraints, R

η
i is the corresponding feasible end-effector region for

η-constraints and uη is the maximum allowed ZMP distance from
the center of mass, C is the center of mass of the quadruped, and
the minimum foot contacts have been set to 1 to ensure the control
policy does not generate a behavior such as pronking.

Term Expression

Joint Speed bool(J̇ > J̇ limitη )

Joint Acceleration bool(J̈ > J̈ limitη )

Foot Eligible Region bool
(

fi /∈R
η
i

)

ZMP bool(‖u−C‖> uη )

Foot Contacts bool
(

∑i bool(Ffi > 0)< 2
)

1) Adding Noise to Observations and Actions: We add

Gaussian noise to the state and action vector [29] to account

for sensor noise and inaccurate actuation. The standard

deviation vector for the observation space is given as

sc {0.02,0.1, [0.05]3, [0.07]3, [0.02]12, [0.0]48, [0.05]36, [0.0]3},

and for the action space, it is given as sc {[0.04]12}, where

sc ∈ [0,1] is a scaling term increased over the training period.

2) Changing Gravity: We randomly sample acceleration

due to gravity between [0.95g,1.05g], where g = 9.81 m/s2

to emulate inertial scaling.

3) Actuator Torque Scaling: We randomly scale the output

torque of our actuator network with the scaling coefficient st ∈
[0.5,2.0] to account for differences between the real actuators

and the approximated model.

4) Changing Link Mass and Size: To ensure the training

does not converge to a local minimum, we scale the mass and

size of each of the links by coefficients slink
m ∈ [0.93,1.07], and

slink
l ∈ [0.97,1.05] respectively.

5) Adding Actuator Damping: We emulate actuator damp-

ing by changing the output of the control policy using

a complementary filter given as J des′

t = KdampJ
des

t + (1 −

Kdamp)J
des′

t−1 where the gain Kdamp is randomized between

[1− (sc/4),1].
6) Changing Simulation Step Time: For the possibility of

execution on soft real time systems, we randomly set the

step times of the control loop between [2.25,2.75] ms. During

experiments we observed that the control policy even worked

when the control frequency was changed from 400Hz to

200Hz.

IV. RESULTS AND DISCUSSION

We performed all training and experiments on commodity

hardware; an Intel i7-8700K and Nvidia RTX 2080Ti. For

training a control policy using our method, we required 450M

simulation samples for about 240 policy optimization itera-

tions using aCPPO, requiring less than 2 hours for a RaiSim

based simulation. We then performed 36 policy iterations over

20M simulation samples using hCPPO. The authors of [15]

required more than 7B simulation steps for convergence.

Having obtained a visually stable behavior in RaiSim, we

tested the control policy in Gazebo simulation of ANYmal

which consisted of an analytical actuator model. We then

tested the control policy on the physical system. In our RL

training, we do not use Gazebo because the compute time

required for each simulation step is significantly larger than

for RaiSim.

Fig. 4: Comparing differences in learnt behavior for constrained and
unconstrained learning approaches. left: the unconstrained learning
approach fails to develop an optimal strategy to track the desired
base velocity commands even after 10M steps, center: the constrained
learning approach limits the exploration of the policy within desired
regions thereby directing policy optimization towards a preferred op-
timum, right: the average discounted episodic reward curves observed
during training.

During our experiments with unconstrained learning meth-

ods, we observed that a constrained learning approach sig-

nificantly directed policy convergence. We trained a control

policy for a simple task of tracking forward base velocity

of 0.7 m/s and observed that when we introduced even a

basic constraint such as limits on end-effector positions with

respect to the nominal stance, the policy trained using our

constrained proximal policy optimization method performed

much better than unconstrained proximal policy optimization,

as is represented in Fig. 4. The reward for both the approaches

was defined using the logistic kernel as K (vbase −0.7) scaled

by a constant. We used the eligible foot regions defined in

Table IV for constrained learning.

Moreover, for tracking base velocity commands, we re-

quired a minimum of about 2B simulation samples with pre-

cise reward function tuning to obtain a control policy similar

to the trot controller. We changed the reward coefficients,

increasing it for the torque required and decreasing for foot

slip, foot clearance and smoothness empirically over at least

20 trials to get such a behavior. Without reward tuning, we ob-

tained inefficient locomotion strategies such as pronking. This

was, however, not the case with GCPO. Moreover, introducing

GPUs in our approach helped us reduce the required training

samples from approximately 1.6B, in the case of only CPPO,

to 470M for GCPO.

The velocity tracking results obtained with our trained con-

trol policy on the physical robot system, outdoors on uneven

terrain, are as shown in Fig. 5. It is important to note that

the physical system comprised of additional sensor modules,

amounting to approximately 10% of the robot mass, which

had not been included in the simulations during training. We

compared the results with the model-based trot controller we

used for GPUs and observed that in most cases our controller

tracks the velocity commands better than the trot controller

as is evident from the tracking error plots. Here, we show

that our policy closely tracks the velocity commands on the

physical system despite having been trained on a simulator

making this a successful sim-to-real policy transfer. Figure 6

represents the sum of the magnitude of torques measured at

each joint for measured forward base velocities. We show

that our controller, trained using GCPO, requires significantly

lesser torque than the model-based trot controller. At most of

the measured forward base velocities, the total joint torque

measured for our controller is 20 Nm less than for the trot

controller.
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Fig. 5: Velocity tracking results obtained on the physical quadruped
system. Left: base velocities measured for our trained control policy
and model-based trot controller for the same sequence of velocity
commands, right: the mean tracking error observed for given base
velocity commands. The confidence bands represent the standard
deviation of tracking error.

Fig. 6: The sum of the magnitude of joint torques measured on the
physical system for each of the joints plotted against the measured
forward base velocity. The confidence bands represent the standard
deviation of torques measured. The controllers operate at 400 Hz.

As shown in Fig. 7, the density of joint velocity and joint

accelerations for measured forward base velocity commands

is very high below 5 rad/s and 50 rad/s2 for the physical robot,

while being even lower for RaiSim. In our experiments, for

5 minutes of data sampled at 400 Hz, we observed that the

hard constraints on the physical system were only violated

for 0.0196% and 0.0490% of times for joint velocities and

joint accelerations respectively. For RaiSim, these values were

0.00119% and 0.00178%. As represented in Fig. 8 for the

unconstrained approach, we measured these values in RaiSim

and computed them to be 1.1710% and 1.2511%, 3 orders

of magnitude larger than for our GCPO controller measured

in RaiSim. Moreover, the density of the joint velocities and

accelerations is significantly higher near the limits than for

our constrained approach. It is important to note, however,

that the behavior of the unconstrained control policies can

be changed by significant re-tuning of the reward function.

Furthermore, our control policy always maintains at least 2

stance legs during locomotion on flat terrain.

Exceeding our expectations, our GCPO controller was able

to track the forward base velocity commands, on the physical

Fig. 7: Joint velocity and acceleration plots for each of the joint on the
ANYmal quadruped plotted against measured forward base velocity.
(a) the kernel density estimate (KDE) for the joint velocities measured
on the physical system plotted using the parameters detailed in [35],
(b) KDE for joint velocities measured in RaiSim, (c) scatter plot
of the measured joint velocities on the physical system with hard
constraint limit set to 15 rad/s, (d) scatter plot of the measured joint
velocities in RaiSim, (e) KDE for joint accelerations measured on the
physical system, (f) KDE for joint accelerations measured in RaiSim,
(g): scatter plot of the measured joint accelerations on the physical
system with hard constraint limit set to 300 rad/s2, (h) scatter plot
of the measured joint accelerations in RaiSim.

Fig. 8: Left: Joint velocity scatter plots obtained for every joint on
the quadruped for an unconstrained locomotion behavior measured
in RaiSim, right: joint acceleration scatter plots.

system, even when we introduced delays into the control

execution with an RMS tracking error of 0.1736 m/s for

following a base velocity command of 0.5 m/s for 10 s. These

delays were randomly sampled from a uniform distribution

between [0,17.5] ms. The controller became unstable when we

sampled delays from distributions with upper limit greater than

20 ms. In most soft-realtime control systems, these delays are

introduced by low-level hardware communication interfaces,

and such a robust controller is certainly desirable.

We observed our controller’s response to external perturba-

tions by applying forces with magnitude ranging from 50 N

to 120 N for duration between 1 s to 5 s to the robot base in

Gazebo. We observed that our controller responded to these

external perturbations by moving in the direction opposite to

that of the applied force, ensuring it’s stability. The controller

was able to respond to external forces of up to 100 N for 1

s duration applied to the base horizontally. We also tested the

controller’s response on the physical system.

We emulated a weak actuator, to test the case where an
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actuator becomes damaged, by reducing the position tracking

gain of the weak actuator to 24. The position gain for all other

actuators was set to 48. We observed that our controller was

still able to track the base velocity commands with an RMS

tracking error of 0.1975 m/s for following a base velocity

command of 0.5 m/s for 10 s.

Furthermore, despite significant inertial scaling, our control

policy, without any parameter re-tuning, still managed to track

velocity commands even when we set the acceleration due to

gravity to 1.62 m/s2 in RaiSim. We observed an RMS tracking

error of 0.2214 m/s for following a base velocity command of

0.5 m/s for 10 s.

V. CONCLUSION

We presented an RL training method for quadrupedal

locomotion which considers safety-critical constraints in its

problem formulation and further encourages system recovery

into stable states upon constraint violations. We used reference

trajectories, obtained using a trot controller, to perform GPUs

in order to direct policy optimization. Our experiments demon-

strate that our RL method offers a robust controller which

requires significantly lesser torque for execution compared

with a model-based controller. Furthermore, it is important to

note that constrained policy optimization does not necessitate

use of GPUs. In our work, CPPO can be used even without

GPUs, but have been introduced to limit exploration and hence

reduce the samples required for convergence.

As part of future research, we aim to demonstrate the

applicability of our method to more complex environments,

and to extend our method to use perception data as a means

to generalizing to a wide variety of challenging terrains.
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