Generative Adversarial Imitation Learning for Quadrupedal
Locomotion using Unstructured Expert Demonstrations

Siddhant Gangapurwala

Abstract—Robotic locomotion tasks heavily rely on control
solutions for considerably simplified mechanical models of the
robotic system in development. Despite being regarded as a
highly complex problem, locomotion tasks performed by animals
and humans can be considered to be near-optimal and highly
efficient. For this reason, the work presented in this report
proposes the use of expert demonstrations performed by humans
to infer an underlying policy that directs the expert behaviour,
and further proposes the use of the learned policy for execution
of locomotion tasks. The report details the experimental results
observed upon implementing an imitation learning algorithm for
the purpose of footstep planning. The work also demonstrates
the feasibility of using a learned policy over states that are not
included in the set of expert training examples thereby making
the algorithm suitable for execution in environments that are
significantly different from the training environments.

I. INTRODUCTION

Much of robotics research aims to develop control solutions
that, depending on the environment of operation, exploit the
machine’s dynamics in order to achieve an extraordinarily ag-
ile behaviour. This, however, is limited by the use of traditional
control techniques such as model predictive control (MPC) [1]
and quadratic programming (QP) [2] which are often based
on existing simplified mechanical models. A model-based
optimization strategy employed over these simplified models
eventually results in a mechanically constrained and inefficient
response thereby limiting the agility of the robotic system in
development.

Treating the control of robotic systems as a reinforce-
ment learning (RL) problem enables the use of model-free
algorithms that attempt to learn a policy which maximizes
the expected future (discounted) reward without inferring the
effects of an executed action on the environment. Authors
of [3], [4] and [5] have successfully implemented these
strategies for various robotics applications including con-
trol of robotic manipulators, helicopter aerobatics and even
quadrupedal locomotion. However, despite the successful im-
plementation of these RL algorithms for the mentioned tasks,
one of the main challenges faced in solving an RL problem
is defining a re function in order to learn an optimal policy
resulting in a sensible robotic behaviour. Often, this reward
function has to be tuned by a human expert.

As a solution to the reward function tuning required in RL
problems, inverse reinforcement learning (IRL) [6] problem
can be characterized as - given expert trajectories of an agent
in a variety of circumstances, determine the reward function

All of the work described in this report, unless otherwise stated, was
performed at Oxford Robotics Institute, University of Oxford.

Supervisor: Dr. Ioannis Havoutis, Oxford Robotics Institute, University of
Oxford.

Figure 1. Model of the ANYmal robot used for this work. The hokuyo laser
scanner is attached to the front of the robot, and the elevation map is generated
using this sensor.

to be minimized. The recovered reward function is then used
to generate a desired policy for a given environment. Authors
of [7] and [8] have successfully implemented IRL techniques
for perception and control tasks. However, the need for an
extra step of solving an RL problem upon having recovered a
reward function adds to the training time. Thus, instead of
directly recovering a reward function, the problem can be
designed as that of imitation learning [9], [10] in which an
agent is trained to perform a task from demonstrations by
learning a mapping between observations and actions.

This work extends upon the technique used by authors
of [11] on generative adversarial imitation learning (GAIL) to
quadrupedal locomotion. GAIL bypasses the intermediate IRL
step of recovering the reward function and directly generates a
policy that maps observations to actions eliminating the need
for model-based optimization strategies. Much of the work on
GAIL so far has been done either using unrealistic simulations
such as MuJoCo environments [12] or on robotic manipulators
without significant research being carried out in the field of
mobile robotics. This report details the use of GAIL strategy
for quadrupedal footstep planning using the elevation map [13]
obtained by the light detection and ranging (LIDAR) remote
sensing method. The work was carried out using the simulation
for the ANYmal robot [14] (Figure 1).

Sources of Demonstration

Onteachersensors‘ ‘ External sensors ‘ ‘On Ieamersensors‘

l

Feature Representations

Raw Designed features Feature extraction
Learning from Demonstration
Refining Policy
Active Learning Apprenticeship Learning | |Reinforcement Learning
Transfer Learning Structured Predictions Optimization

Figure 2. Imitation Learning Flowchart. Diagram by authors of [15].

II. THEORY

The following subsections detail upon the techniques used
in this work.

A. Learning from Demonstrations

As mentioned in [15], imitation learning draws its impor-
tance from its relevance to a variety of applications includ-
ing flying vehicles, brain-computer interface, driverless cars,
robotic manipulators, legged robots and computer games. It
works by extracting information about the behaviour of an
expert and the environment of operation and inferring a map
between the state of the agent and the demonstrated actions.
In a robotic system, the state may refer to the robot’s position,
joint angles, robot velocity, and, as in the case of this report,
elevation map of the environment, whereas the actions may
refer to the joint torque commands, acceleration of the robot,
target velocity, or, as in the case of this report, displacement
of each of the legs of a quadruped along the abscissa and
ordinate.

The workflow of a typical imitation learning problem is as
shown in Figure 2. Expert demonstrations are first acquired
and are then encoded as state-action pairs. These state-action
pairs are then used to train a policy. However, learning a
direct mapping between state and action may not always result
in a desired behaviour. This is often due to issues such as
unstructured expert demonstrations, correspondence problem,
or insufficient number of demonstrations.

Some of the definitions, taken from [15], required to under-
stand the concept of imitation learning are introduced below.

Definition 1: The process of imitation learning is one by
which an agent uses instances of performed actions to learn
a policy that solves a given task.

Definition 2: An agent is defined as an entity that au-
tonomously interacts within an environment towards achieving
or optimizing a goal [16]. An agent can be thought of as a
software robot; it receives information from the environment
by sensing or communication and acts upon the environment
using a set of actuators.

Definition 3: A policy is a function that maps a state (a
description of the agent, such as pose, positions and velocities
of various parts of the skeleton, and its relevant surrounding)
to an action. It is what the agent uses to decide which action
to execute when presented with a situation.

Definition 4: A demonstration is presented as a pair of
input and output (x,y). Where x is a vector of features de-
scribing the state at that instant and vy is the action performed
by the demonstrator

Definition 5: An experience is presented as a tuple
(s,a,r,s") where s is the state, a is the action taken at state
s, T is the reward received for performing action a, and s’ is
the new state resulting from that action.

Definition 6: A policy that uses t in learning the parameters
of the policy is called a non-stationary policy (also known
as non-autonomous policy [17]) i.e the policy takes into
consideration at what stage of the task the agent is currently
acting.

Definition 7: A stationary policy (autonomous) neglects
the time parameter and learns one policy for all steps in an
action sequence.

Definition 8: An action u(t) can often represent a vector
rather than a single value. This means that the action is
comprised of more than one decision executed simultaneously;
such as pressing multiple buttons on a controller or moving
multiple joints in a robot.

Definition 9: Low level actions are those that execute
simple commands such as move forward and turn in navigation
tasks, or jump and shoot in games.

Definition 10: Motor primitives are simple building blocks
that are executed in sequence to perform complex motions. An
action is broken down into basic unit actions (often concerning
one degree of freedom or actuator) that can be used to make
up any action that needs to be performed in the given problem.

Definition 11: High level macro actions are decisions that
determine the immediate plan of the agent. It is then broken
down to lower level action sequences. Examples of high level
decisions are grasp object or perform forehand.

The imitation learning problem can be introduced in the
framework of Markov decision process (MDP) [18]. An MDP
is a discrete time stochastic control process [19] in which, at
each time step, the process is in a state s and an action a
is chosen from the available actions in state s. The process
then shifts to a new state s’ with a probability given by the
state transition function Pr,(s,s’) returning a corresponding
reward R,(s,s’). In an MDP, the next state s’ is conditionally
dependent on the current state s and the chosen action a,
however, the current state s is independent of all previous
actions and states.

To summarise, an MDP is a tuple (S, A, P,, Ry,), where

e S is a set of states,

e A is a set of actions,

o Pro(s,s’) = P(sip1 = $§|st = s,a; = a) is the
probability that action a in state s at time ¢ will lead
to state s’ at time ¢ + 1,

e R,(s,s’) is the immediate reward received after transi-
tioning from state s to s’ as a result of action a,

e v €[0,1] is the discount factor.

In an MDP [20], an agent follows a policy 7 : S — A
from a policy space II that determines which action to take in
the current state s. Upon taking action a, the agent receives a
reward R, (s, s’) bounded in [0, 1] after moving to new state s’
with a transition probability P(s|s,a). The state distribution
at time ¢ following a policy 7 from time 1 to ¢ — 1 is denoted
as d', and the average state distribution of states over T steps
is denoted as d,. The T-step expected reward of policy 7 is
thus given by

T

J(m) = Egvgr [R(s,7(5))] = T Esnq, [R(s,7(5))].

t=1

A trajectory is a complete sequence of (s,a, R (s, 7 (s)))
tuples from ¢ = 1 to ¢t = T. The goal of the problem is
to learn a policy m € II that maximizes the task reward
J (). In imitation learning, an expert which executes policy
7* and demonstrates actions o’ = argmax R (s, a) in state s

is available. The learning algorithm ?)%fy attempts to imitate
the expert’s behaviour without any notion of the task reward
function. Thus maximizing the task reward is reduced to
maximizing a surrogate reward with respect to the expert’s
policy.

One of the methods used for imitation learning is imitation
by classification. In this approach, the expert’s trajectories
are used as supervised data to learn a multiclass classifier
(policy) which predicts the expert action under distribution
of states induced by running the expert’s policy. At each
step ¢, a training sample (s;, 7* (s¢)), where 7* (s¢) is the
expert’s action (class label) in state s;. Consider a surrogate
reward function r (s, 7, 7* (s)). This could be any concave
reward function used for training the classifier, for example,
negative hinge loss in support vector machine (SVM). Thus,
a supervised learning algorithm can be used to learn a policy
such that

o =argmax r (s,m, 7" (s)).
mell

Supervised learning approach, however, ignores the fact that
state distribution for the learner may be different than for the
expert. Thus, when the learner attempts to mimic the expert
in a situation where the state distribution is different from
that of the expert, it cannot perform classification correctly
resulting in the execution of an action that can potentially
change the following state distribution thereby significantly
increasing the negative reward. Eventually, the learner may
reach a state where it performs random actions.

So as to correctly perform actions over the states for which
the expert’s demonstrations are not available, an inference

scheme is necessary. The IRL problem tackles this by re-
covering the reward function for the agent through expert’s
demonstrations. An RL problem is then solved in an inner loop
to generate policies. As an alternative to IRL techniques such
as GCL [8], GAIL [11] draws a connection between imitation
learning and generative adversarial networks (GAN) [21].

B. Generative Adversarial Imitation Learning

The concept of GAIL is largely based on IRL as opposed
to behavioural cloning (BC). In case of BC the learner learns
a policy as a supervised learning problem over state-action
pairs from expert trajectories. Using IRL avoids the issues
associated with BC such as that of covariant shifts. The authors
of [11] adopted the technique of maximum causal entropy
IRL [22], [23] in order to rationalize an expert policy. The
technique fits a cost (negative reward) function ¢ from a family
of functions C' with the optimization problem

maximize <£rne11111 H(m)+E, [c(s,a)]) E.« [c(s,a)]
where H (1) £ E, [~logm (a|s)] is the v-discounted causal
entropy [24] of the policy 7. Maximum causal entropy IRL
looks for a cost function ¢ € C' that assigns low cost to the
expert policy and high cost to other policies. The expert policy
can be thus found using a certain RL procedure such that,

RL (¢) = argmin—H (7) + E, [¢ (s, a)]
mell
which maps a cost function to policies with high entropy
that minimize the cumulative cost. The authors of [11] define
an IRL primitive procedure IRL(7*) which finds a cost
function such that the expert performs better than all other
policies, with the convex cost function regularizer ¢ by,

arg max—1 (¢)+ (min — H (7)) +E; [c(s, a)]) —E,- [¢(s,a)]
cERSXA mell

where R¥*4 = {c: S x A — R} are all the cost functions
learned by the IRL strategy on largest possible set of cost
functions C'. The cost regularizer used in [11] is given by

Eq«[g(c(s,a))] ife<O
c é s)
vaa(c) +00 otherwise
where
—x —log (1 — exp(x if x <0
(a) = { (el e <
400 otherwise

The GAIL problem is constructed such that IRL is the
dual of RL. The solution of the primal RL is considered
optimal, and is also the solution as that recovered from the
IRL cost function. The inspiration here is to characterize
RLoIRLy (7*). This is derived to be

RLoIRLy (%) = argmin — H (7) + Yéa (Pr — prv)
mell

where occupancy measure p, is the distribution of state-
action pair encountered while navigating the environment with

the policy m, and g,, the convex conjugate of 1ga. Here
wEK}A (p‘n' - Pw*) is given by

E, [log (D (s,a))] + E« [log (1 — D (s,a))].

max

De(0,1)5x4
where D refers to the discriminative classifiers.

Having characterized the problem as described above, the
problem of imitation learning can be now considered as a
procedure that tries to induce a policy which matches the
expert’s occupancy measure. The optimal loss up to a constant
shift is the Jensen-Shannon divergence Dys. Treating the causal
entropy as a policy regularizer, controlled by A > 0, we obtain
an imitation learning algorithm given by

miniT{nize —AH (77)+¢2<}A (pﬂ' - p‘n'*) = DJS (pTH pﬂ'E)_AH (ﬂ-)

which finds a policy whose occupancy measure minimizes
Jensen-Shannon divergence to the expert’s.

In the the GAIL setting, the learner’s occupancy measure
is analogous to the data generated by G, and the expert’s
occupancy measure is analogous to the true data distribution.
The discriminator function can then be considered as a local
cost function providing learning signals to the policy. For the
GAIL algorithm we aim to find the saddle point (7, D) of the
expression

E. [log (D (s,))] + Ex- [log (1 — D (s,a))] — AH ().

To do so, function approximation for m and D are first
introduced given by a parametrized policy my with weights 6,
and a discriminator network D,, : Sx A — (0, 1) with weights
w. This is followed by alternating between an Adam [25]
gradient step on w to maximize the above equation with
respect to D, and a policy gradient step using a method such
as trust region policy optimization (TRPO) [26] or proximal
policy optimization (PPO) [27] on # to minimize the above
equation with respect to 7. This forms the basis for the GAIL
algorithm (Algorithm 1) as described in [11].

Algorithm 1: Generative Adversarial Imitation Learning

Input: Expert trajectories 7* ~ 7*, initial policy and
discriminator parameters 6y, wg
1fori=0 1 2,... do
2 Sample trajectories 7; ~ Ty,
3 Update the discriminator parameters from w; to w;41
with the gradient

E.. [Volog (D (s,a))] + B [V, log (1 — D (s,a))]

4 Take a policy step from 6 to ;11 using the TRPO
rule with cost function log (Dwi 1 (s,a))- Specifically,
take a KL-constrained natural gradient step with

., [Vglogmg (als) Q (s,a)] — A\VeH (mp)
where @ (3,a) is given by

E,, [log (D, (s,a)) |so =35, a0 =@

5 end

III. PROBLEM STATEMENT

The motivation for the work detailed in this report was the
fact that much of the work on imitation learning for robotics
was performed on robotic systems such as robotic manip-
ulators or on simulations in MuJoCo environments without
significant work being done on mobile robots. Furthermore,
much of the work that addresses tasks such as robotic loco-
motion heavily rely on using simplified mechanical models of
the robotic systems in development, thus making the control
of these systems inefficient. In order to address the chal-
lenges faced in developing solutions for robotic locomotion
especially in case of legged robots, the strategy of learning
from demonstrations, as in [11], [9], [28], seemed to provide
a satisfactory solution for the experiments performed in the
mentioned work, and was able to directly map raw feature
space into actions. The GAIL algorithm was implemented in
this work for its property of being able to directly generate
a policy through IRL technique without the need for running
an intermediate RL step. Moreover, GAIL provides a manner
of inference which enables the use of the learned policy for
mapping observations, which haven’t been included in the
demonstrations, to actions.

The work carried out as part of this project can be stated
as: planning sequence of footstep placements for ANYmal
quadruped using elevation map and robot state as observa-
tions in order to ascend and descend a wide range of staircases
using generative adversarial imitation learning approach by
providing expert demonstrations for inference. The problem
statement was slightly modified from the original statement in
which, instead of planning footstep placements, obtaining joint
trajectories was proposed. However, the higher dimensionality
associated with solving the problem for 12 joints in the
quadruped resulted in trajectories which were not smooth (as
described in the next section), and thus, not suitable for robotic
control.

IV. APPROACH

The ANYmal development framework for the robot operat-
ing system (ROS) [29] was used as a platform for development
and testing of the imitation learning strategy for this project.
The overall flow of the project consisted of:

1) Task demonstration and trajectory data collection
2) Training the GAIL algorithm on the collected data
3) Deploying the learned model for task execution

A. Expert Demonstrations and Trajectory Data Collection

For the purpose of demonstrations, various world models
were created in Gazebo [30] some of which are shown in
Figure 3. The expert data collected was in the form of state-
action pairs wherein the state consisted of a 200 x 200
elevation map matrix and an 8-dimensional vector consisting
the robot end effector positions relative to the robot’s base.
Figure 4 shows the visual representation of the elevation map
in Rviz [31]. The actions recorded were the displacements
of the end-effector of each of the legs in =z and z direction
relative to the world frame. These are derived from the footstep

Figure 3. World models created using Gazebo.

Figure 4. Visual representation of the elevation map in Rviz for a certain
Gazebo world. The elevation map consists of 200 x 200 grid cells each of
size 0.02 x 0.02 m?

locations of the robot. The expert demonstrations were given
by preselecting the positions of the each of the legs’ end
effector for each set of steps. The locations of these preplanned
footsteps are as represented in Figure 5. The state-action pairs
were recorded after execution of each of the steps. It was
assumed that step execution effectively meant losing contact
from ground and then re-establishing it. To realize this, the
contact force sensors were used. A zero force implied the
step was being executed. After the sensors returned a non-zero
value, the execution was considered to be completed, and the
state and action data was recorded.

For the purpose of the original problem statement for which
change in joint positions was considered to be an action,
the state consisted of the elevation map along with a 12
dimensional vector representing the joint states. The recorded
trajectory was sampled every 100ms. Compared to footstep

Figure 5. The coloured globs represent the expert footstep plan for each of
the legs of the quadruped.

planning, this problem statement was more complex due to the
high sampling rate and the higher dimensionality associated
with the action space. The action was a 12 dimensional vector
compared to 8 for the footstep planning case.

B. Learning a Policy from Expert Demonstrations

The GAIL algorithm was used to train a policy from the
expert data collected in the previous step. The training was
done in a different manner for each of the problem statements
as previously mentioned. However, the general model for both
the approaches is similar, and is represented in Figure 6.

1) Obtaining Joint Trajectory: As described in the previous
subsection, the action space for obtaining joint trajectories
using GAIL spanned 12 dimensions. Furthermore, the dataset
for this problem statement consisted of a lot more sample
points that for footstep planning. The training was done in a
manner such that the previous four state vectors were used
to form the state representation vector as in Figure 6. Having
obtained the data, the GAIL algorithm with the losses defined
in Section Il were used to train the neural networks with a
PPO step for generator policy optimization.

2) Planning Sequence of Footsteps: The training method
used for this approach was similar to that used for obtaining
joint trajectory with the exception that more training examples
were required for this problem. The training was a lot slower
especially because the simulations in Gazebo had to be run
every time new samples were required. Since Gazebo only
supports real-time execution of tasks, the time consumed in
generating the expert trajectories was significantly high.

C. Executing the Learned Policy

Upon training the generator by the method shown in Fig-
ure 6, the policy was tested for its performance on Gazebo

|

NS
==

Figure 6. The flow of the algorithm implemented for imitation learning using
GANSs.

Position Vector

State Representation
Vector

TRPO/PPO
Loss

Il

Wasserstein GAN
Discriminator Loss

29
93 hi
/\3
™
L‘{x/ Forearm
Elbow

N
&1‘@ Base

Figure 7. RRR robotic manipulator for which the FK equations were derived
and then implemented for each of the legs of ANYmal to compute the end
effector position.

worlds that had not been included in the training set. The
trained policy was initially tested for the problem statement
wherein the change in joint angles were obtained as actions.
The 12-dimensional output from the generator network was
then used to compute the position of the end-effector every
100 ms using forward kinematic (FK) [32] equations for an
RRR manipulator as shown in Figure 7. Upon computing the
end-effector positions, the Freegait controller provided as part
of the ANYmal development framework was used to execute
step actions.

For the footstep planning problem, the Freegait controller
was directly implemented for the outputs generated by the
generator. No additional computations were required. Further-
more, since the actions were generated only after execution of

° °
2 Q
8 8 8 H
o ° ° @
Ox L]
8 I 8 8
Q 2 ® ®
o © 5 s
a b

Figure 8. The figures represent the footstep placement for a certain test
Gazebo world. The circular markers represent the expert’s footstep placement,
while the cross markers represent the output of the GAIL algorithm. a)
Observed output for obtaining joint trajectories using GAIL. b) GAIL for
footstep placement planning.

each step, which lasted for almost 1 s, there was no delay in
the output generated by the network. Thus, the system could
be executed real-time.

V. OBSERVATIONS AND RESULTS

The trained policy was used to generate actions for states
that had been included in the training data. This was done
in order to test the ability of the GAIL algorithm to learn a
policy that matched the expert’s.

It was observed that for the problem statement of obtaining
joint trajectories, the GAIL algorithm failed to generate tra-
jectories that were smooth. This added to the effect of drift in
the y-direction which eventually caused the robot to become
unstable. As can be seen in Figure 8, the learned policy did not
closely match the expert’s policy. However, for the problem of
planning footsteps, imitation learning was observed to generate
actions that closely matched the expert’s. In this case, the
GAIL strategy satisfactorily managed to learn the expert’s
policy.

Through the experiments conducted with GAIL for world
models that had not been a part of the training set, it was
observed that the algorithm performed well for new enviro-
ments. It successfully managed to ascend and descend 4 out
of 7 test staircases. Out of the other 3 staircases, the algorithm
managed to ascend the staircase for 2 world models, however,
failed to descend. This was largely due to the fact that the
steps were not observable. The laser scanner failed to detect
the steps that were right underneath the scanner. For the other
1 test staircase, the algorithm failed to plan footsteps that could
result in a stable ascent. It was observed that along the edges
of the steps, the algorithm generated foot sequences that were
extremely close to the edges. In 3 test cases, the footstep plan
was quite close to resulting in the quadruped flipping over.

VI. CONCLUSION AND FUTURE WORK

The report reviewed the performance of the GAIL algorithm
for its application in robotic locomotion. Having observed the
behaviour for the joint trajectory problem statement, it was
concluded that the high dimensional problem was not suitable
for execution using the imitation strategy. Instead, the learned

REFERENCES

policy performed a lot better for a low dimensional task of
footstep planning. The performance of GAIL, however, could
not be quantitatively defined. The learned policy performed
well for the task of ascending and descending a staircase but
the dynamic nature of the problem implies that the expert
trajectories only cover a subset of possible states rendering the
need for inference necessary. GAIL managed to execute action
for states that weren’t included in the demonstrations thereby
being able to infer the expert’s behaviour up to a satisfactory
extent. To improve its performance however, a significantly
bigger training set is necessary.

The task of ascending and descending a staircase is com-
paratively easier to imitate than a task which includes walking
over a rough terrain. With this regard, the future work shall
include environments where footstep placements heavily rely
on the dynamic stability of the robot. Furthermore, the work
shall include policy optimization techniques such as genetic
distillation instead of PPO for its better sampling efficiency.

In conclusion, the GAIL algorithm was successfully imple-
mented for the ANYmal robot for the task of ascending and
descending a staircase.

REFERENCES

[1] D. Dimitrov, A. Sherikov, and P. B. Wieber. “A
sparse model predictive control formulation for walking
motion generation”. In: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2011,
pp- 2292-2299. por: 10.1109/IROS.2011.6095035.

[2] Scott Kuindersma, Frank Permenter, and Russ Tedrake.
“An Efficiently Solvable Quadratic Program for Stabi-
lizing Dynamic Locomotion”. In: CoRR abs/1311.1839
(2013). arXiv: 1311.1839. URL: http://arxiv.org/abs/
1311.1839.

[3] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, et al.
“Deep Reinforcement Learning for Robotic Manipula-
tion”. In: CoRR abs/1610.00633 (2016). arXiv: 1610.
00633. URL: http://arxiv.org/abs/1610.00633.

[4] Andrew Y. Ng, Adam Coates, Mark Diel, et al. “Au-
tonomous Inverted Helicopter Flight via Reinforce-
ment Learning”. In: Experimental Robotics IX. Ed. by
Marcelo H. Ang and Oussama Khatib. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 363-372.
ISBN: 978-3-540-33014-1.

[5] N. Kohl and P. Stone. “Policy gradient reinforcement
learning for fast quadrupedal locomotion”. In: Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004
IEEE International Conference on. Vol. 3. 2004, 2619—
2624 Vol.3. DoI: 10.1109/ROBOT.2004.1307456.

[6] Andrew Y. Ng and Stuart J. Russell. “Algorithms for
Inverse Reinforcement Learning”. In: Proceedings of
the Seventeenth International Conference on Machine
Learning. ICML ’00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 663—-670. ISBN: 1-
55860-707-2. URL: http://dl.acm.org/citation.cfm?id=
645529.657801.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Markus Wulfmeier, Dushyant Rao, Dominic Zeng
Wang, et al. “Large-scale cost function learning for
path planning using deep inverse reinforcement learn-
ing”. In: The International Journal of Robotics Re-
search (2017), p. 0278364917722396. por: 10.1177/
0278364917722396. URL: http://dx.doi.org/10.1177/
0278364917722396.

Chelsea Finn, Sergey Levine, and Pieter Abbeel.
“Guided Cost Learning: Deep Inverse Optimal Control
via Policy Optimization”. In: CoRR abs/1603.00448
(2016). arXiv: 1603.00448. URL: http://arxiv.org/abs/
1603.00448.

A. Billard and D. Grollman. “Robot learning by
demonstration”. In: Scholarpedia 8.12 (2013). revision
#138061, p. 3824. DoI: 10.4249/scholarpedia.3824.
Pieter Abbeel, Adam Coates, and Andrew Y Ng. “Au-
tonomous helicopter aerobatics through apprenticeship
learning”. In: The International Journal of Robotics
Research 29.13 (2010), pp. 1608-1639.

Jonathan Ho and Stefano Ermon. “Generative adversar-
ial imitation learning”. In: Advances in Neural Informa-
tion Processing Systems. 2016, pp. 4565—4573.

E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics
engine for model-based control”. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems. 2012, pp. 5026-5033. por: 10.1109/IROS.2012.
6386109.

Péter Fankhauser, Michael Bloesch, Christian Gehring,
et al. “Robot-Centric Elevation Mapping with Un-
certainty Estimates”. In: International Conference on
Climbing and Walking Robots (CLAWAR). 2014.
Marco Hutter, Christian Gehring, Dominic Jud, et al.
“Anymal-a highly mobile and dynamic quadrupedal
robot”. In: Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. 1IEEE. 2016,
pp. 38-44.

Ahmed Hussein, Mohamed Gaber, Eyad Elyan, et al.
“Imitation Learning: A Survey of Learning Methods”.
In: 50 (Apr. 2017).

Stuart J. Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. 2nd ed. Pearson Education,
2003. 1SBN: 0137903952.

Stefan Schaal, Auke Ijspeert, and Aude Billard. “Com-
putational approaches to motor learning by imitation”.
In: Philosophical Transactions of the Royal Society B:
Biological Sciences 358.1431 (2003), pp. 537-547.
Alexandre Attia and Sharone Dayan. “Global
overview of Imitation Learning”. In: arXiv preprint
arXiv:1801.06503 (2018).

Richard Bellman. “A Markovian Decision Process”. In:
Indiana Univ. Math. J. 6 (4 1957), pp. 679-684. 1SSN:
0022-2518.

He He, Jason Eisner, and Hal Daume. “Imitation learn-
ing by coaching”. In: Advances in Neural Information
Processing Systems. 2012, pp. 3149-3157.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et
al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672-2680.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

Brian D Ziebart, Andrew L Maas, J Andrew Bag-
nell, et al. “Maximum Entropy Inverse Reinforcement
Learning.” In: AAAI Vol. 8. Chicago, IL, USA. 2008,
pp. 1433-1438.

Brian D Ziebart. Modeling purposeful adaptive be-
havior with the principle of maximum causal entropy.
Carnegie Mellon University, 2010.

Michael Bloem and Nicholas Bambos. “Infinite time
horizon maximum causal entropy inverse reinforcement
learning”. In: Decision and Control (CDC), 2014 IEEE
53rd Annual Conference on. IEEE. 2014, pp. 4911-
4916.

Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

John Schulman, Sergey Levine, Pieter Abbeel, et al.
“Trust region policy optimization”. In: International
Conference on Machine Learning. 2015, pp. 1889-
1897.

John Schulman, Filip Wolski, Prafulla Dhariwal, et al.
“Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

Josh Merel, Yuval Tassa, Dhruva TB, et al. “Learning
human behaviors from motion capture by adversarial
imitation”. In: CoRR abs/1707.02201 (2017). arXiv:
1707.02201. URL: http://arxiv.org/abs/1707.02201.
Morgan Quigley, Ken Conley, Brian Gerkey, et al.
“ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5.

Nathan Koenig and Andrew Howard. “Design and use
paradigms for gazebo, an open-source multi-robot sim-
ulator”. In: Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Con-
ference on. Vol. 3. IEEE. 2004, pp. 2149-2154.
Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, et al.
“Rviz: a toolkit for real domain data visualization”. In:
Telecommunication Systems 60.2 (2015), pp. 337-345.
Mark W Spong, Seth Hutchinson, Mathukumalli
Vidyasagar, et al. Robot modeling and control. Vol. 3.
Wiley New York, 2006.

