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Abstract—Considering the fact that the problem of heteroge-
neous swarm optimization, in which robotic systems of different
forms perform collaborative tasks to achieve a certain goal,
encompasses several research areas of robotics requiring devel-
opment of solutions for perception, locomotion, navigation and
manipulation, this research project combines classical control-
theory-based methods for low-level robotic control, such as
torque tracking, with deep learning techniques for high-level
robotic tasks, such as navigation. This report details upon the
work performed for development of a heterogeneous swarm
optimization solution using techniques, such as proximal policy
optimization (PPO) and trust region policy optimization (TRPO),
and further explores the domain of control where both low and
high level control tasks are solved using a unified approach of
control theory and deep learning. Moreover, this report details
the motivation and approach for developing a modular robotic
control framework (MRCF) for deploying a heterogeneous swarm
system consisting of, but not limited to, quadrupedal robotic
systems, autonomous ground vehicles, and autonomous aerial
vehicles.

I. INTRODUCTION

As described in [1], the problem of heterogeneous swarm
optimization is built on the premise that, in a swarm of
homogeneous robots, a single robotic platform cannot cater to
all of the aspects of the task at hand, because at the individual
level, it is governed by design rules that limit the scope of its
capabilities.

The problem of swarm optimization takes into considera-
tion the various sub-domains of robotics research including
perception and control, thereby making it a comparatively
complex problem for optimization using classical control
theory. Moreover, a heterogeneous system further increases
the complexity of the problem due to the fact that every
different form of robotic platform that exists in the system
is controlled by different strategy suited for that particular
platform. However, the system of robotic swarm necessitates a
generalized approach towards control optimization, since each
of the robots in the system contributes towards the realization
of a certain goal.

Much of the research on robotic swarm has focused on
formation control as in [2] [3] [4] and [5]. Though there has
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been some work done in swarm distribution based on task
allocation as in [6] [7] [8] [9] and [10], the research has
either focused on homogeneous swarm of robots or on tasks
that cannot be used for practical applications. Moreover, the
research work has mostly related to implementing constrained
optimization strategies for task allocation based on distribution
of traits which further limits the behavior of the robotic
systems comprising the swarm. As an alternative, this research
project explored the domain of TRPO and PPO techniques [11]
to generate a policy for a heterogeneous robotic swarm system
to perform a search-and-rescue task.

Previously, researchers, such as authors of [12] and [13],
have worked on developing swarm optimization solutions
using reinforcement learning (RL) methods but have mainly
focused on homogeneous swarm systems. As described by
the authors of [10], this report details upon the work on RL
approach to solving a cooperative multi-agent task based on
locally sensed information of an agent, and extending it to
agents of multiple forms.

Despite the tremendous progress in the field of RL, most
of the currently developed RL strategies converge to a sub-
optimal state as the dimensionality of the problem increases.
To develop a solution for a problem such as that of hetero-
geneous swarm optimization, it is important to consider that
the dimensionality of the problem grows exponentially with
the number of robotic platforms in the system, thereby, sig-
nificantly increasing the training period for an RL algorithm,
and also, increasing the probability of convergence to a sub-
optimal state. Furthermore, if a general policy is implemented
for both, executing a cooperative behavior of all the robotic
platforms in the system and low-level robotic control, such as
for, torque tracking, the dimensionality of the problem further
increases, making the problem too complex for training an
optimal policy.

This work, therefore, focused on using a hierarchical ap-
proach towards high and low level control of the problem.
Moreover, a unified method of using classical-control-theory
based techniques for low level control and deep learning
based techniques for high level control was also tested. The
motivation for this research came from previous work done on
robotic locomotion using RL methods.

Much of the research in robotic control aims to develop
solutions that, depending on the environment of operation, ex-
ploit the machine’s dynamics in order to achieve agile behav-
ior. This, however, is limited by the use of traditional control
techniques such as model predictive control (MPC) [14] and
quadratic programming (QP) [15] which are often based on
simplified rigid body dynamics and contact models. A model-
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based optimization strategy employed over such simplified
models often results in a constrained range of solutions that do
not fully exploit the versatility of the robotic system, thereby
limiting the agility of the robot in question.

Treating the control of robotic systems as an RL problem
enables the use of model-free algorithms that attempt to learn a
policy that maximizes the expected future (discounted) reward
without inferring the effects of an executed action on the
environment. Authors of [16] [17] and [18] have successfully
implemented these strategies for various robotic applications
including control of robotic manipulators, helicopter aero-
batics, and even quadrupedal locomotion. However, despite
the successful implementation of these RL algorithms for
the mentioned tasks, one of the main challenges faced in
solving an RL problem is defining a reward function in order
to learn an optimal policy resulting in a sensible robotic
behavior. Often, this reward function needs to be tuned by
a human expert. For tasks such as quadrupedal navigation
through rough terrain, computing a reward function is also
significantly more difficult than for tasks such as posture
recovery, which when solved using an RL algorithm results
in a near-optimal policy. Hence, a unified approach towards
control combining classical-control-theory and deep learning
was explored through this project. Furthermore, this project
has inspired development of MRCF as a general robotic
control framework to be used as a tool by researchers for
rapid prototyping of robotic platforms, along with performing
comparative analysis of various control algorithms developed
by the research community.

This project included testing performance of RL algorithms
for a search-and-rescue task by a heterogeneous swarm system
comprising of a quadrupedal robotic system, ANYmal [19],
and a quadcopter, in which a quadcopter performed the task of
exploring the surroundings until it found a goal, after which
ANYmal walked towards the goal while avoiding obstacles.
The simulations were carried out in RaiSim [20] as shown in
Figure 1, developed by Jemin Hwangbo2, Dongho Kang2 et
al. at RSL where this research work was performed, using an
RL framework, RaiLearn, also developed at RSL.

Figure 1. Simulation of the quadrupedal robotic system, ANYmal, on the
RaiSim simulation platform.

II. BACKGROUND

The following subsections detail upon the platforms and
techniques used in this research work.

A. Simulation Platform

The RaiSim simulator, used in this project, features efficient
recursive algorithms for articulated systems as well as novel
contact solvers, as described in [21], thereby, making it a
suitable platform for use in data-driven robotics and animation
research. The developers of the simulator promise a 50 times
speed-up in the training period of an RL algorithm over other
simulators such as Gazebo [22]. Also, it has a built-in actuator
model. For simulations, the primitive shape objects in the
simulator are created using a C++ user API while articulated
systems are loaded from URDF. Table I compares some of the
widely used simulators, including Bullet [23], ODE [24] and
MuJoCo [25], detailed in [26].

Table I

RaiSim Bullet ODE MuJoCo
Initial Release Unreleased 2006 2001 2015

Author(s) J. Hwangbo E. Coumans R. Smith E. Todorov
D. Kang

License Proprietary Zlib GPL/BSD Proprietary
Main Purpose Robotics Gaming Gaming Robotics

Language C++ C/C++ C++ C
API C++ C++/Python C C

Contacts Hard Hard/Soft Hard/Soft Soft
Solver Bisection MLCP LCP PGS/CG

Coordinates Minimal Minimal Maximal Minimal

Some of the benchmark results for the following tests -
• Rolling test: Friction model test.
• Bouncing test: Single-body elastic collision test.
• 666 balls test: Single-body hard contact test.
• Elastic 666 balls test: Single-body energy test.
• ANYmal PD control test: Articulated-robot-system

speed test for quadrupedal robot.
• ANYmal momentum test: Articulated-robot-system mo-

mentum test.
• ANYmal energy test: Articulated-robot-system energy

test.
are as shown in Table II.

Table II

RaiSim Bullet ODE MuJoCo
Rolling ++ +++ - +

Bouncing ++++ ++ +++ -
666 +++ + ++ +

Elastic 666 ++++ ++ +++ -
ANYmal PD +++++ +++ + ++++

ANYmal Momentum +++ ++ +++++ ++++ (RK4)
++ (Euler)

ANYmal Energy ++++ +++ ++ +++++ (RK4)
+++ (Euler)

where more ’+’ is better, and ’-’ refers to - cannot be
simulated due to inaccurate model or excepted. For its per-
formance, it is expected that RaiSim will be a good alternative
to the current state-of-the-art engines for contact simulation of
robotics.
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B. Learning Framework

Similar to RaiSim, the learning framework RaiLearn was
developed at RSL to be integrated with the RAI system.
RaiLearn is a C++ framework built to develop and benchmark
learning algorithms. It has been designed for reinforcement
tasks especially for robotic applications. It is basically a collec-
tion of classes that are useful for learning and are categorized
into the core module and non-core modules. The core module
contains classes that are essential for reinforcement learning,
such as algorithms, noise, tasks, and memory, and non-core
modules contain useful tools for coding, such as graphics and
utilities. Implementation of a new environment in RaiLearn is
similar to that of OpenAI Gym [27]. The framework is not yet
publicly released.

C. Trust Region Policy Optimization

Effective for optimizing large nonlinear policies, such as
neural networks, TRPO [28] has demonstrated robust perfor-
mance on a wide variety of tasks, such as learning simulated
robotic swimming, hopping and walking gaits.

As described in [29], trust region methods define a region
around the current iterative within which they trust the model
to be an adequate representation of the objective function, and
then choose the step to be the approximate minimizer of the
model in this region.

Consider a Markov Decision Process (MDP) given by the
tuple (S,A, {Psa} , γ, R, ρ0) where
• S is a finite set of N states
• A = {a1, ..., ak} is a set of k actions
• Psa

(
s
′
)

is the state transition probability of landing at

state s
′

: P
(
s, a, s

′
)

upon taking the action a at state s
• γ ∈ [0, 1) is the discount factor
• R : S → R is the reward function
• ρ0 : S → R is the state distribution of the initial state s0
• ρπ : S → R is the discounted visitation frequencies,

ρπ = Pr [s0 = s] + γPr [s1 = s] + γ2Pr [s2 = s] + ...

• η (π) = Es0,a0,.. [
∑∞
t=0 γ

tr (st+1)] is the expected dis-
counted cumulative reward of policy π

• Qπ (st, at) = Est+1,at+1,..

[∑∞
l=0 γ

lr (st+l)
]

is the action
value function

• Vπ (st) = Eat,st+1,..

[∑∞
l=0 γ

lr (st+l)
]

is the value func-
tion

• Aπ (s, a) = Qπ (s, a)− Vπ (s) is the advantage function
As derived in [30],

η (π) ≈ η (π0) + Eρπ0 Ea∼π(s) [Aπ0
(s, a)]

The TRPO problem (Algorithm 1), as detailed in [28], is
then given by

maximize
θ

Lθ0(θ)− CD̄KL (π0||π)

subject to D̄KL (πθ0 ||πθ) ≤ δ

Algorithm 1 Approximate policy iteration algorithm guaran-
teeing non-decreasing expected return η

1: Initialize π0.
2: for i = 0, 1, 2, ... until convergence do
3: Compute all advantage values Aπi (s, a).
4: Solve the constrained optimization problem

πi+1 = arg max
π

[
Lπi (π)−

(
2ε′γ

(1− γ)
2

)
Dmax
KL (πi, π)

]
where ε′ = max

s
max
a
|Aπ (s, a)|

and Lπi (π) = η (πi) +
∑
s

ρπi (s)
∑
a

π (a|s)Aπi (s, a)

5: end for

D. Proximal Policy Optimization

Unlike in the case of TRPO, PPO gets rid of the com-
putation created by constrained optimization by proposing a
clipped surrogate objective function as detailed in [31]. The
PPO algorithm that uses fixed length trajectory segments is
shown in (Algorithm 2).

Algorithm 2 Proximal Policy Optimization using Actor-Critic
Method

1: for iteration=1,2,... do
2: for actor=1,2,...,N do
3: Run policy πθold in environment for T timesteps
4: Compute advantage estimates Â1, ..., ÂT
5: end for
6: Optimize surrogate L wrt θ, with K epochs and mini-

batch size M ≤ NT ; θold ← θ
7: end for

III. PROBLEM STATEMENT

The motivation for the work detailed in this report was
the fact that much of the research on robotic swarm systems
focused on homogeneous swarms or on use of constraint based
optimization strategies. Furthermore, much of the work that
addresses tasks such as robotic locomotion heavily rely on
using simplified mechanical models of the robotic systems in
development, thus making the control of these systems ineffi-
cient. In order to address the challenges faced in developing
solutions for heterogeneous swarm optimization including task
allocation and low-level control such as robotic locomotion,
the research work focused on using a hierarchical reinforce-
ment learning strategy for both high and low level control of
the robotic platforms.

The work carried out as part of this project can be stated
as: Developing a hierarchical reinforcement learning based
strategy for high and low level control of robotic platforms in-
cluding a quadrupedal robot and an aerial vehicle comprising
a heterogeneous swarm system for execution of a search-and-
rescue task. Moreover, experiments implementing a unified
approach for high and low level control based on deep learning
and classical control theory methods were also performed.
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IV. APPROACH

The overall flow of the project consisted of:
1) Design and development of simulation environment for

RaiSim simulator
2) Integration of the developed environment with RaiLearn

framework
3) Testing the performance of the RL strategies for different

tasks and reward functions

A. Design and Development of Simulation Environment

The RaiSim simulator, being in the early stage of de-
velopment, required further development to include robotic
platforms such as aerial vehicles. The simulator does not yet
support propulsion simulation. Therefore, using an existing
quadcopter model was not possible. Instead, a box was used
to emulate quadcopter dynamics governed by

τB =

 Lk
(
ω1

2 − ω3
2
)

Lk
(
ω2

2 − ω4
2
)

b
(
ω1

2 − ω2
2 + ω3

2 − ω4
2
)
 ,

where τB refers to the torques in the body frame of the
quadcopter, L is the distance from the center of the quadcopter
to any of the propellers, and ωi is the angular velocity of the
motor i. The total thrust on the quadcopter in the body frame
is given by

TB =

4∑
i=1

Ti = k

 0
0∑
ωi

2

 .
The ANYmal quadrupedal robotic system was also used

in the environment. The quadcopter task included exploring
the environment until it found a goal, after which, ANYmal
started walking towards the goal while avoiding obstacles.
The quadcopter updated the global map at each iteration.
The global map included information such as explored region,
location of obstacles, traversable region, and location of the
goal. Since, the RaiSim simulator, does not include a camera
capture feature, a 50 × 50 matrix was used to generate a
global map representing the (15× 15)m2 area of operation.
−1 represented unexplored region in the global map. 0 referred
to a traversable region and 1 was used to represent a region
consisting of obstacles. This map was updated at every time
step depending on the location of the quadcopter.

The simulation environment is as shown in Figure 2.

B. Integration with Learning Framework

The simulation environment developed for RaiSim was then
used to integrate with the RaiLearn learning framework. The
software architecture of the framework shares resemblance
with OpenAI Gym, except RaiLearn only supports C++. More-
over, it uses TensorFlow [32] as a backend for initializing
computational graphs.

The framework provides algorithms such as PPO, TRPO,
deep deterministic policy gradients (DDPG), etc. that were
used to train some of the control policies in the swarm system
as described in the next sub-section.

Figure 2. RAI-Sim environment for simulating a heterogeneous swarm sys-
tem consisting of an ANYmal quadruped and a quadcopter (here represented
as a floating box). The quadcopter first explores the map until it discovers the
goal (shown as a sphere), after which, ANYmal starts to walk towards the
goal while avoiding the obstacles.

Figure 3. The control strategy used for both high and low level control of
the robotic platforms in the heterogeneous swarm system.

C. Training and Testing Control Policies

The hierarchical robot control strategy for the search-and-
rescue task is as shown in Figure 3. Both the robotic platforms
are given high level commands based on the robot states and
the updated global map from a trained policy. The high level
commands given to the ANYmal quadruped include ẋ, ẏ and
ψ̇. These commands are given to a neural network trained
using a policy gradient technique which outputs joint torque
commands for each of the 12 joints in the quadruped. The
high level commands to the quadcopter are given to a PID
controller [33] which then outputs angular velocities for each
of the motors of the quadcopter.

1) Low-Level Robot Control: The low level ANYmal con-
trol was done using a neural network trained using TRPO.
Both the value function and policy estimation was done
using multi-layer perceptron (MLP) network as represented
in Figure 4. A comparatively simple network managed to
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Figure 4. The architecture of the MLP used to train the policy for joint
torque control of the ANYmal quadruped.

generate a complex policy for quadruped locomotion using
the TRPO method. In fact, the gait obtained using the trained
policy was observed to be 25% faster than other hand-coded
control strategies. The policy also performed extremely well
for stabilization when an external force was applied to the
quadruped. The trained policy was thus used for low level
control of the ANYmal robot.

The quadcopter controller was fairly simple. PID control
technique was used to generate angular velocity commands
for each of the motors of the quadcopter. The input to the
controller included x, y and z axis displacements. These were
obtained from the high-level control policy.

2) High-Level Robot Control: A general policy was trained
to perform a cooperative multi-agent search-and-rescue task
using the PPO method. The neural network architecture, repre-
sented in Figure 5, was used for both policy and value function
estimation of the search-and-rescue task. The computation
graph was created using TensorFlow which was then used
along with the environment created for RaiSim for training.
Simple experiments to test the performance of the framework
were first carried out, following which, the PPO method was
used to train a policy for executing the search-and-rescue task.
The inputs to the neural network included a 50 × 50 global
map matrix, and a 12 dimensional state vector comprising of
x, y and ψ of the ANYmal quadruped with respect to the
world frame, x, y, z, φ, θ and ψ of the quadcopter with
respect to the world frame, and a 3 dimensional vector given
by {GoalFound,Goalx, Goaly}, where GoalFound is either
0 in case the goal is yet undiscovered, during which Goalx
and Goaly are both 0, or 1, in the case the goal is discovered
and the terms Goalx and Goaly then represent the x and y
positions of the system goal.

The output of the policy network is a 6 dimensional vector
given by {ẋA, ẏA, ψ̇A, xQ, yQ, zQ} where A refers to ANYmal
and Q refers to the quadcopter.

The reward at each time step, used for the
search-and-rescue task, is computed as shown below

Figure 5. The neural network architecture used for value function and policy
estimation using PPO for high level robot control of the heterogeneous swarm
system.

Reward, R← 0
if ANYmal_AtGoal == False then

if GoalDiscovered == False then
R← R− c1

else
if RewardedForGoalDiscovery == False then

R← R+ c2
RewardedForGoalDiscovery← True

R← R− c3 × Dist_ANYmalFromGoal
R← R− c4 × Quadcopter_OffAreaOfOperation
R← R− c5 × ANYmal_OffAreaOfOperation
R← R−c6×Quadcopter_DistanceFromDesiredHeight
R← R− c7 × Collision_QuadcopterWithObstacles
R← R− c8 × Collision_ANYmalWithObstacles
R← R+ c9 × ExploredRegionsInGlobalMap

where ci is a scaling term.

The neural network architecture required considerable
amount of tweaking. During some of the initial tests, it was
observed that no learning occurred due to extremely low
randomness in the initial values of the network parameters.
The performance curves are as shown in Figure 6. However,
a great improvement was observed upon changing some of
the transfer functions and also by using some normalization
techniques, as is shown in the Figure 7.

Following some initial tests and having observed improve-
ment in the learning process, the scaling terms in the reward
function were accordingly adjusted to obtain faster learning
for desired behavior.
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Figure 6. No learning was observed during some of the initial tests even
after more than 3k policy iterations.

Figure 7. Upon tweaking some of the training parameters, a significant
improvement was observed in the learning process.

V. OBSERVATIONS AND RESULTS

The trained policy was used to perform task allocation based
heterogeneous swarm optimization. It was observed that the
PPO strategy failed to learn in the case where the parameters
were not tweaked. However, it did a lot better when a few
machine learning hacks were used. Moreover, it was observed
that the PPO strategy was sample inefficient requiring policy
iterations of more than 20k to perform the desired task. Also,
the complexity of the neural network used for training further
added to the training period. It was observed that setting the
quadcopter elevation to be constant significantly improved the
performance of the training algorithm.

For high level control policy, the performance observed was
satisfactory. The policy managed to perform extremely well
when the goal position was near the center of the area of
operation (AOP), however, failed at several instances when the
goal position was near the edges. This could have been due
to the penalty given as the quadcopter moves away from the
AOP because of which it prefers exploration around the center
of the AOP. The exploration done by the quadcopter was thus
limited to the center of the AOP. The high level control of the
quadruped, however, was extremely well executed. It managed
to reach the goal, while avoiding the obstacles in most of
the cases. There were, however, cases when the policy could
not generate a feasible path for the quadruped. This happened
mostly when several obstacles were very close to the goal.

Unlike in the case of high-level control, the low-level con-
trol policy performed extremely well for quadruped locomo-
tion without any known instances of failure. The TRPO algo-
rithm, despite a simple policy network, managed to achieve a
locomotion behavior which was faster than the hand-designed
controller for the ANYmal quadrupedal robot. Moreover, in
some of the other experiments performed to test the TRPO
performance for posture recovery, in which case, when the

ANYmal was pushed until it tipped off, it was observed
that the robot managed to recover to its base state in a lot
better manner than in case of a classical-control-theory based
approach.

When a general policy was used to perform both, high and
low level control of the robotic systems, it failed to learn.
However, the use of a hierarchical approach promised a much
desired robotic swarm behavior.

VI. CONCLUSION AND FUTURE WORK

The report reviewed the performance of the policy gradient
techniques for use in heterogeneous robotic swarm optimiza-
tion. Having observed the behavior for unified high and low
level control, it was concluded that the high dimensional
problem was not suitable for execution using the learned
PPO policy. Instead, the hierarchical architecture promised a
lot better performance. Moreover, though not quantitatively
analyzed, it was concluded that the policy trained using TRPO
for low level control of ANYmal was extremely well suited
for the application. For future work, performing a comparative
analysis of each of the reinforcement learning and classical-
control-theory based algorithms shall be considered.

The work on this project has further motivated development
of MRCF which shall be extremely handy especially for rapid
prototyping solutions for various desired robotic behaviors.
Here, the motivation and approach for development of the
framework is detailed.

As demonstrated by the authors of [16] [17] and [18],
who have successfully implemented RL strategies for various
robotic applications including control of robotic manipulators,
helicopter aerobatics, and even quadrupedal locomotion, RL
promises significant development in the field of robotics.
However, despite the successful implementation of these RL
algorithms for the mentioned tasks, one of the main challenges
faced in solving an RL problem is defining a reward function
in order to learn an optimal policy resulting in a sensible
robotic behavior. Often, this reward function needs to be tuned
by a human expert. For tasks such as quadrupedal navigation
through rough terrain, computing a reward function is also
significantly more difficult than for tasks such as posture
recovery, which when solved using an RL algorithm results
in a near-optimal policy.

As a solution to the reward function tuning required in
RL problems, the inverse reinforcement learning (IRL) [34]
problem can be characterized as; given expert trajectories of
an agent in a variety of circumstances, determine the reward
function to be minimized. The recovered reward function is
then used to generate a desired policy for a given environment.

The authors of [35] and [36] have successfully implemented
IRL techniques for perception and control tasks. These meth-
ods, along with other RL algorithms, will be included in the
MRCF. Moreover, since most of these IRL approaches require
an extra step of solving an RL problem upon having recovered
a reward function, thereby increasing the training time, an
alternative approach of imitation learning (IL) [37], in which
an agent is trained to perform a task from demonstrations by
learning a mapping between observations and actions, can also
be used.
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Most of the mentioned algorithms can be used for both low
and high level control. However, based on previous experi-
ments and as described next, using classical control theory
approaches for low level control with deep RL approaches for
high level control enables the development of control solutions
that are not attainable by each method alone. It is therefore
important to include controllers such as the linear quadratic
regulator [38], MPC, and QP in the MRCF. These controllers
will also be used in the hierarchical software architecture for
solving problems such as heterogeneous swarm optimization.

As previously described, much of the work on RL, IRL and
IL has used either physics simulators that often allow non-
realistic interactions, for example MuJoCo environments [25]
often allow applying forces from a distance, or on simple
robotic platforms such as manipulators (e.g. non-changing
dynamics). In contrast, less research work has focused in the
field of mobile robotics where the control problem tends to
be more complex. This is often due to issues such as sensor
and actuation uncertainty as described by the authors of [39],
dynamically changing environments, which may require con-
trol optimization at each time step, and the use of simplified
mechanical models as done by authors of [40]. Throughout the
work that shall be carried out during development of MRCF,
the aim shall focus on developing and extending upon the
proposed algorithms by the reinforcement learning research
community for real-world application and accordingly plan on
realistic benchmarks and frequent real-world trials.

For RL problems where the reward function needs to be
well tuned, the policy often converges to a sub-optimal state,
making evident the need for solutions based on techniques
such as IRL. One project that the author of this report had
previously worked on involved extending on the technique
used in [41] on generative adversarial imitation learning
(GAIL) to quadrupedal locomotion. Based on the principles of
IRL, GAIL bypasses the intermediate IRL step of recovering
the reward function and directly generates a policy that maps
observations to actions, eliminating the need for model-based
optimization strategies. The work carried out as part of the
project, as shown in Figure 8, on the quadrupedal robot
platform, ANYmal [19] can be summarized as; planning
sequences of footstep placements for the ANYmal quadruped
using elevation map and robot state as observations, to ascend
and descend a wide range of stairs using generative adversarial
imitation learning by providing expert demonstrations. The
problem statement was slightly modified from the original
statement in which, instead of planning footstep placements,
obtaining joint trajectories was proposed. However, the higher
dimensionality associated with solving the problem for the
12 Degrees of Freedom (DoFs) of the quadruped resulted in a
policy producing not smooth trajectories, and thus, not suitable
for robotic control. Therefore, footstep plans were generated
using GAIL and a controller based on FreeGait [42] was used
for low-level control. The experiments carried out as part of
this project motivated further research in the development of
hierarchical models of robotic control.

Following the work performed as part of this project, the
proposed future research work shall involve developing a
unified approach to robotic control by combining deep learning

Figure 8. The Gazebo simulation environment for the experiments carried
out as part of the GAIL strategies for ascending and descending different
kinds of stairs.

and control theory based methods. This shall allow extending
upon previous work and developing a versatile robot control
framework, usable in a wide range of application domains.

The beginning of the research work will focus on the devel-
opment of MRCF which will consist of several existing robotic
control algorithms. Moreover, the MRCF will be compatible
with several robotic platforms and the Robot Operating System
(ROS). During the development of the framework, each of the
added algorithms shall be tested for its performance through
comparative analysis with pre-existing frameworks such as
the OpenAI Gym. The training will be done by building test
environments for the RAI-Sim and the Gazebo simulators.

After having tested the algorithms packaged with MRCF,
the project will focus on the development of a heterogeneous
swarm environment, consisting of aerial and ground robots.
Each of the robots will be controlled by a learned policy
at a lower-level. For example, the ANYmal quadruped will
be controlled by a learned policy that given ẋ, ẏ, and ψ̇
commands as input, will produce 12 joint torques, as control
inputs for the robot’s joints. For different robot platforms,
however, different control strategies will be used, either based
on control theory or deep learning, depending on the platform.
One of the main challenges faced during development of a
control strategy for a robot is the quantitative analysis of the
performance of the algorithm. For this reason, a thorough
comparative study of different types of algorithms used in
different environments is necessary. Depending on the robot’s
behavior and the environment of operation, the best suited
control strategy will be used for low-level control.

Having trained policies for low-level robotic control, for var-
ious kinds of robotic platforms, implementation of a heteroge-
neous swarm system for the task of exploring the environment
of operation and navigating to different goals shall be done.
The modularity of MRCF will enable the fast development of
such a system. Various algorithms, including policy gradient
methods will then be used for swarm optimization, that is,
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training a policy to compute high-level commands for the
robotic systems in the swarm. A comparative study to test
the performance of each of the algorithms used shall then
be performed. Though, many of the reinforcement learning
algorithms promise convergence to a near-optimal solution,
such a problem will need to account for the varying number
of robotic platforms used in the swarm. Through some of the
previous work, it was observed that the training period for
a varying number of robots is significantly higher than for a
fixed number, thereby necessitating more compute resources.

To benchmark the algorithms, a comparative analysis of
each of the used methods for various performance parameters
including training period, convergence reward, generalization
of the algorithm by tests in different environments, and training
iterations shall be carried. The benchmarks will include test
trials in simulation and with the real robots.

In conclusion, the research project detailed in this report was
successfully implemented. It further motivated development of
the MRCF, the work of which has already begun. Following
the development of the framework, a thorough comparative
analysis of various training algorithms for the task of hetero-
geneous swarm optimization will be performed.
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